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Proposal for quantum spin tomography in ferromagnet-normal conductors
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We present a theory for a complete reconstruction of nonlocal spin correlations in ferromagnet-normal
conductors. This quantum spin tomography is based on cross-correlation measurements of electric currents into
ferromagnetic terminals with controllable magnetization directions. For normal injectors, nonlocal spin corre-
lations are universal and strong. The correlations are suppressed by spin-flip scattering and, for ferromagnetic

injectors, by increasing injector polarization.
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I. INTRODUCTION

Spintronics utilizes the electron spin in electronics appli-
cations and is an important subfield of condensed-matter
physics. It is possible to create metallic or semiconducting
hybrid ferromagnet-normal conductor systems smaller than
the spin-flip length,'? yet semiclassically large. Topics of
current interest focus on the average nonequilibrium spin
accumulation and dynamics. These subjects are, e.g.,
spin injection, precession, and relaxation,'”® spin Hall
effects,* current-induced magnetization excitations,” the re-
ciprocal magnetization dynamics-induced spin pumping.®
spin-based transistors,” and ferromagnet-superconductor
heterostructures.®

The Pauli exclusion principle causes spin correlations.
The correlations between injected spins in ferromagnet-
normal conductor systems have received much less attention.
In two-terminal junctions, current correlations have been in-
vestigated in few-level quantum dots® as well as semiclassi-
cally large systems.'®!! The prime targets have been noise
due to spin-flip scattering and the super- or sub-Poissionian
nature of the autocorrelations.

In multiterminal junctions, current cross correlations al-
low investigations of nonlocal spin-transport properties. Of
main interest has been the sign of the cross correlations,
studied in quantum dots,'? diffusive'® and superconducting'*
systems, and chaotic cavities.'> Moreover, in the context of
entanglement of itinerant spins, works on few mode'® and
recently also semiclassical'”!® conductors considered nonlo-
cal detection schemes with cross correlations between cur-
rents in noncollinear ferromagnetic terminals.

A fundamental and important question which has not been
addressed is if known nonlocal spin injection and detection
schemes'? can be extended to identify nonlocal spin corre-
lations. Imagine spins injected into a normal conductor and
detected at two different spatial locations by ferromagnetic
terminals. What are the nonlocal spatial correlations between
the spins? Is it possible to completely characterize the corre-
lations by experimentally accessible electrical current corre-
lations? We provide answers to these questions for semiclas-
sical systems: (i) nonlocal spin correlations are strong, and
for normal injectors, universal and (ii) spin correlations can
be reconstructed by a sequence of measurements of correla-
tions of currents at ferromagnetic detectors with controllable
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magnetization directions, a quantum spin tomography.

We consider a semiclassically large, normal (metal or
semi) conductor connected to a normal or ferromagnetic in-
jector, biased at a voltage V, and two spatially separated
detectors, A and B, see Fig. 1. Detector A (B) consists of a
normal node coupled to grounded ferromagnetic terminals
Al and A2 (Bl and B2) via tunnel contacts with conduc-
tances G4, and G,, (G, and Gg,). Throughout, conduc-
tances are dimensionless and in units of the conductance
quantum 2e?/h. The detectors A and B probe noninvasively
the nonlocal spin correlations.

Let us first summarize and explain our main results (i) and
(ii) for the nonlocal correlated spin-transport properties in
the device in Fig. 1. First, combining scattering theory and a
Boltzmann-Langevin approach we derive an expression for
the current correlations

262 eV
Saigj = _j dEs p,(E) (1)
hJo
with

Saigj=4GaGpl(fy + Py~ ) (Sf g+ Py~ p))y,  (2)

where P4,(Pg;) is the polarization of the tunnel contact to
terminal Ai (Bj),

FIG. 1. (Color online) (a) A normal conductor is connected to an
injector biased at voltage V and two detector nodes A and B. The
node A (B) is coupled to grounded ferromagnetic detector terminals
Al and A2 (B1 and B2). (b) Node A is connected to the normal
conductor, as well as nodes A1 and A2 via tunnel conductances Gy,
Gy, and Gy, respectively. The polarizations P,; and P4, of the
contacts to the ferromagnetic terminals are in opposite directions.
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5fA/B = 5ffs./3i + O0yp- O

is the ﬂuctuating part of the 2 X 2 spin-distribution matrix at
A/B, 6=[6,,6,,6,] is a vector of Pauli matrices, and (--);

denotes the average over fluctuations. The matrix 5fA g, With
elements 9 %=(f1f}) p.qeic.x,y,z}, is the spin-
correlation matrix, describing the irreducible, or exchange,
correlations between spins at A and B.

We then show our result (ii): 5f‘A g can be reconstructed by
a sequence of measurements of, e.g., S,;p; with different
settings of P,; and Pg,. Importantly, this quantum spin to-
mography can be performed for arbitrary (finite) magnitudes
of the polarizations |P,;| and |Pg,| and spin-flip scattering in
the conductor. Moreover, global spin symmetries limit the
number of finite elements of 6f‘AB, allowing for a simplified
quantum spin tomography with fewer cross-correlation mea-
surements.

For a normal injector we derive a generic expression for

Of 4z With nonzero elements

Oy = 8f04/2, (3)
Ofap=fxp=fsp= 75f23/2’ (4)

where 6}‘23 is the equal-spin correlator and 7y quantifies the
spin coherence in the conductor. y=1 for a coherent system,
i.e., no spin-flip scattering, and y=0 for a system with strong
spin-flip relaxation. For a ferromagnetic injector, the correla-
tions depend on the properties of the conductor, as shown
below.

Inserting Egs. (3) and (4) into Eq. (2) gives a cross cor-
relator

SaiBj = ZGAiGBjang[l + Py PBj]’ (5)

depending on the relative orientation of the polarizations P,;
and Pyg;. This together with Egs. (3) and (4) demonstrate our
counterintuitive result (i): any conductor with a normal in-
Jector displays strong and universal nonlocal spin correla-
tions. We note that for the current cross correlator, similar
results have been obtained in particular geometries'®'3 with
no spin-flip scattering, y=1.

II. QUANTUM SPIN TOMOGRAPHY

We now describe the quantum spin tomography, starting
for clarity with the known properties!® of the average spin-

distribution matrix in node A, fA = f;lA +f, - &, where the real
polarization vector f,=[f},f},/5] with |f4)=1. The average
current is

eV
e
Iy = Zf dEiAl(E) (6)
0
with!®
ig1 =2G 0 [fy + Pyy - £4]. (7)

For the quantum spin tomography, we transform the orbital
scheme developed in Ref. 20 to the spin degree of freedom
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and extend it to account for arbitrary detector polarization.
Formally, to determine f} and f; four independent measure-
ments of the current are needed. The theoretically most con-
venient set {IX}, k=1-4 has the polarrzatrons Pgll)/ Py
=[0,0,1], PAfl/PA]_[o 0,-11, PY)/Py=[1,0 0], and
P§\41/PA1—[0 1,0], where P4 =
also feasible. The expression in Eq. (7) then allows writing

({k=fc.x.y.2})

4
> o)
=1
=, 8
fi 4G 4,e*Vih ®
where
P P00
-1 -1 20
Gun ©)
Py | -1 -1 0 2
1 =100

Knowing the polarization P,; and the conductance G4; from

independent measurements, the spin-distribution matrix f‘A is
fully reconstructed by current measurements. Importantly,
for a normal injector, only f7 is nonzero. For a ferromagnetic
injector, when the spin-quantization axis along the direction
of polarization, only fj and f; are nonzero.

We then turn to the spin-correlation matrix 5fAB with the
16 real elements §f1%. This implies that we need 16 indepen-
dent cross-correlator measurements to determine all elements

ofh% and reconstruct f 4. From Eq. (2) we obtain the formal
relation between the coefficients §f4% and the cross correla-
tors

— s 10
8GA1GBIV63/hk§ Q AlBL> ( )

ofip=
where Sgkl’gl is the cross correlator with the detector terminal
setting k at A1 and / at B1. Here Qp, is obtained from Q4; by
changing P4, to Pp;.

For a normal injector, the requirement?! of invariance of
5fAB under any global spin rotation means that there is only
four nonzero elements Jf}; and 5]%9— Of =0y For a fer-
romagnetic injector (defining the spin-quantization axis) in-

—{e?1),e7'?| | )} yields?? six nonzero elements 8f%%, %

Sy Of i and Ofiy= %
From Egs. (9) and (10) the detector polarization settings

necessary to determine the nonzero components of fA and
Of 45 are found: For a normal injector, only collinear polar-
izations at A and B are needed for both f, and &f,5. For a

ferromagnetic injector, for f‘ ", the detector polarizations in
addition have to be collinear with the injector one. However,

for 5fA g honcollinear polarizations at A and B are necessary,
e.g., both along x and z axes, since Of5z# Of45=0f 5. Im-
portantly, for an unknown direction of the injector polariza-
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tion or two (or more) noncollinear ferromagnetic injectors,
the full tomographic scheme with detector polarizations
along all three axes x, y, and z are required.

III. MODEL AND SCATTERING THEORY

We will now detail our calculations, assumptions, and ap-
proximations. In addition to the information given above, the
normal conductor in Fig. 1 is connected to detector nodes A
and B via tunnel barriers with conductances G, and Gg. The
two ferromagnetic terminals A1 and A2 (B1 and B2) have
opposite directions of polarization. We assume the limit of
low temperature k7 <<eV. All conductances are much larger
than unity.

It is assumed that the normal conductor consists of diffu-
sive and/or chaotic parts, allowing a semiclassical treatment
of the orbital properties. In contrast, spin is treated fully
quantum mechanically. Furthermore, scattering is elastic.
Following the magnetoelectronic circuit theory of Ref. 19,
we discretize the system into nodes connected via tunnel
barriers, see Fig. 1. Each node v, spatially much smaller than
the spin-flip length, is characterized by a 2 X2 distribution

matrix with an average, f,,, and a fluctuating, 5f,,, part. To
ensure that the detectors do not influence the spin properties
of the system, we require (i) G4 <Gy;+Gy, and Gy <Gy
+Gyp, so that an electron entering, e.g., node A from the
conductor is emitted into A1 or A2 and do not return to the
conductor and (11) GA1PA1=_GA2PA2 and GBlPBl=_G32PBZ7
which ensures that no spin polarization is induced into the
conductor from the ferromagnetic terminals, i.e., the mea-
sured spin signal arises from the conductor exclusively and
not from the detector circuits.

Deriving Eqs. (2) and (7), we first review!® the spin infor-
mation present in the average spectral current iy (E). In the
scattering approach,?? with no particles incident from termi-
nal A1l in the bias window (0=<E=¢V), the spectral current
is

nAln_bXTnbAln’ (11)

iAl = Z <ngl,n>v
no

where b9l 1., creates an electron on the ferromagnetic side in
the contact between Al and A, in conduction mode n propa-
gating into A1 and the energy dependence is suppressed. The
spin-quantization axis =1, is along the direction of Py;.
The creation operators bﬂyn are related to the operators b}
for electrons on the normal-conductor side, emitted from
node A toward Al, via the spin-dependent transmission ma-
trix of the normal-ferromagnetic interface 74; with elements
141 um- Following Ref. 19, we make the semiclassical ap-
proximation that the spin-distribution matrix in node A is

independent of mode index, i.e., (bﬂb;\’;n) = f;’”’ Sym» giVINg
ig1 =2 T =Gay t{(1+ Py, - 6)f,). (12)

Here' 741=3,,,(fx1 ) (Ea1 ) "= G1 (1 4Py, - &), where the

elements of the 2 X2 matrix are (741 ) gr=14] ,,- Equation

(12) directly gives Eq. (7). Similar relations hold for the
average currents into A2, B1, and B2.
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We then turn to the low-frequency correlations between
electrical currents in, e.g., terminals Al and Bl, Suip
= [dt(Al,;(0)Al(t)). Scattering theory®? gives

> Knd g —aS Xng 0], (13)

nm,oT

SA1B1 =

where ngl’mzbgﬂ,m Bl and bB1 _u Creates an outgoing elec-
tron on the ferromagnetlc side, in conduction mode m in Bl
with spin-quantization axis along the direction of the magne-
tization ng. Disregarding terms of second order in G,/(Gy,;
+Gy,) or Gg/(Gp+Gpy), the operators bAl , and b;,m are

expressed in terms of the operators b5, and b;’f and the
scattering amplitudes of the respective normal-ferromagnetic
interfaces. Making the semiclassical approximation that the
nonlocal irreducible correlator

<bgTbAmb b31> <bﬂbAm><kasz>_ 5]‘17 5 By O
we arrive at

o' o7 po0’ 7
2 ’IXI B1JAB _GAIGBI

ot
o0 TT

SA1B1 =

Xtr{[(1+Py; - ) @ (1 +Ppy - 6)16f a5}, (14)

where f};l is obtained by changing all indices A to B in 5;1
and ® is the tensor product. Here we work in the basis
{l ie., the matrix elements

(5fAB)|O'T>,|O" Y= 5ﬁg o
correlation matrix 8f,5=(df4 ® df ), provides a semiclassi-

I. As is shown below, the 4 X 4 spin-

cal interpretation of &f,z. This means that Eq. (14) directly
gives Eq. (2). Moreover, the expressions for the other corr-

elators S4;5; can similarly be given in terms of 5fAB. This

shows that &f 5 contains all information about nonlocal spin
correlations that can be obtained from cross correlations.

IV. BOLTZMANN-LANGEVIN APPROACH

To further investigate the properties of f” s f” 3, and 5f‘ WA
now turn to the spin-dependent Boltzmann-Langevin ap-
proach of Ref. 11. The average part of the distribution matrix

f,, at node v is determined from the condition of conservation
of matrix currents into the node,

E ZV}L=O’
yn

where the following symmetry holds i,,=-i,,. The 2X2
matrix current between a normal node v and a ferromagnetic
or normal node w is

iy = (G20 +P, - 6),(f,~ f)} (15)

with {-,-} the anticommutator, G,,M the tunnel conductance
between the nodes, and P u the polarization vector of node u
(P,=0 for a normal node). The distribution matrices for nor-
mal and ferromagnetic terminal nodes are { for biased termi-
nals and O for grounded. This allows us to calculate the dis-
tribution matrices of all nodes.
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For the fluctuating part of the distribution matrix, we first

note that the total fluctuations of the matrix current Afm
flowing between two nodes v and w is a sum of the bare

fluctuations 5’?141 and bj,,# due to the fluctuating distribution
matrices. For v normal and u normal or ferromagnetic

(S:Z-V,u = (Gv,u/z){(l + P//, ' &)7(5f1/_ 5f,u)}
The requirement of matrix current-fluctuation conservation
> MAfW:O then gives 5f,, in terms of 5fvu' The bare fluctua-

tions &i v at different contacts are uncorrelated while for v,
normal

A

- Gours Aoy Ao
(Bl ® biyy)p= —Z’f[fv® A-fl)+f,®(1-f)W+Hc.,

(16)

where H.c. denotes hermitian conjugate and the permutation

matrix W has nonzero elements Wi1=Wy=Ws=Wy=1. For
v normal and u ferromagnetic we instead have

A

A G A A oA
<51V/_L ® 6iu,u,>f= _;M{([l +P,u, : &]f/;) ® (1 _fv)

+((1+P, 6l[1-f,) ®f}W+He.
(17)

Here we used that ferromagnetic (i.e., terminal) distributions
do not fluctuate. From these relations any electrical current

correlator (Ai,Ai, )., with Ai,=t[Ai,], can be obtained.
Spin-flip scattering is taken into account on the level of
the relaxation-time approximation. This amounts to coupling
each node n to a spin-flip node ¢v with a tunnel contact with
conductance G, *1/7,,, with 7, the spin-flip time of the
node, and requiring conservation of electrical current and
current fluctuations into the spin-flip node. Here we give the
universal results of the calculation, i.e., we consider an arbi-
trary normal conductor with any amount of (spatially depen-
dent) spin-flip scattering, the details of the calculations are
given elsewhere. First, by comparing the obtained expression
for the spectral cross correlators s,;5;=(Ais;Aig), with Eq.

(14) we conclude that &f,z=(5f4® 5f3)f, discussed above.
Second, for normal injectors, we find the generic form

=31 -NTeT+29W].  (18)
This is just the result in Egs. (3) and (4).

V. SINGLE-NODE CONDUCTOR
Further insight is obtained by calculating the properties of
the simplest possible conductor, a single node.? For a normal

injector we find the distribution function at, e.g., A as f‘A
=G,/ (G4 +G)f1 with f=G/(G+G,+Gp) the distribution
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function of the conductor node and G the injector-conductor
node conductance. This is independent of spin-flip scattering.
For the spin-correlation matrix we get the result in Eq. (18)
with
G*G,Gy
5f23 = 3

(G+Ga+Gp)'(Gay + Gpy) (G + Gpy)
and y=[1+7/7,]"" with 7/7,=G,/(G4,+Gg+G) the ratio of
spin flip and dwell times in the central node. To be explicit,

the experimentally accessible current cross correlation is thus
given by

(19)

4¢3V

Saip1 = TGAleéng[l + P41 - Pyl (20)
For a ferromagnetic injector with polarization P; the spin-
distribution matrix at, e.g., A has two nonzero components
(F!T=fl and (FH=fi with fL'=f(1=P)(1FPy)
+7,/ Tl [(1-P}f)+7,/7] with P,=|P|. For the spin-
correlation matrix, the full expression, including spin-flip
scattering, becomes very lengthy and we only present the
result for y=1. This is &f5y=0f 5= g(c,i+c)/2, Oy
= 8= 00f5(co—c )12, and Sf5y= = 8f4zco/2 With c.
=(1£P)*/(1=P)° and co=(1-P})/[1-(P,f)*]. Inserting
this into Eq. (14) we get the total-current cross correlator

4¢3V
Saip1 = Y Ga1Gp1fgplcr+co[1+P4 - Pgl)  (21)

with

c,+c_—2c
= > O+(P21+P%1)

cp—C_

2

;= (1+ Py, Py)

This clearly demonstrates that while a ferromagnetic injector
leads to a polarization of the conductor, it suppresses the spin
correlations.

VI. CONCLUSIONS

In conclusion we have presented a scheme for quantum
state tomography of nonlocal spin correlations in normal-
ferromagnetic conductors. This quantum spin tomography is
performed by measuring cross correlations of electrical cur-
rents at ferromagnetic terminals with controllable polariza-
tion. Nonlocal correlations are generically strong but sup-
pressed by spin-flip scattering and ferromagnetic injectors.
All ingredients of our proposal are accessible with present
day technology, making an experimental test of our predic-
tions feasible.
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